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Abstract

This paper examines the numerical derivation and reinterpretation of Planck
units within the framework of Laursian Dimensionality Theory (LDT). While con-
ventional physics treats Planck units as quantities derived from fundamental con-
stants, LDT reveals their deeper significance as natural scales emerging from the
”2+2” dimensional structure of spacetime—two rotational spatial dimensions plus
two temporal dimensions. We present explicit calculations of all standard Planck
units and demonstrate how they acquire new physical interpretations when viewed
through the LDT framework. In particular, we show how the Planck length rep-
resents a fundamental angular displacement in rotational space, the Planck time
reflects the minimal temporal cycle across both temporal dimensions, and other
Planck units emerge as natural limits related to dimensional coupling strengths.
This reformulation provides physical intuition for the magnitudes of these units
and suggests experimental approaches that could directly probe the fundamental
dimensional structure of reality. Our analysis illuminates why Planck units appear
as they do, offering deeper insight into the dimensional foundations that underlie
all physical measurements.

1 Introduction

Planck units constitute a system of natural units derived from fundamental physical
constants, providing scales that are intrinsic to nature rather than defined by human
convention. Introduced by Max Planck in 1899, these units are typically viewed as
representing the scales at which quantum gravitational effects become significant and our
current understanding of physics breaks down.

In conventional physics, Planck units are defined by combining the gravitational con-
stant G, the reduced Planck constant ℏ, the speed of light c, Boltzmann’s constant kB,
and the vacuum permittivity ε0. While mathematically well-defined, their physical sig-
nificance remains somewhat mysterious—why should these particular combinations of
constants represent fundamental scales?

Laursian Dimensionality Theory (LDT) offers a novel perspective on this question. By
reinterpreting spacetime as a ”2+2” dimensional structure—with two rotational spatial
dimensions and two temporal dimensions, one of which is typically perceived as the third
spatial dimension—LDT provides a geometrical understanding of Planck units. In this
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framework, these units emerge not as arbitrary combinations of constants but as natural
scales related to the dimensional structure of reality itself.

This paper presents a systematic derivation of the standard Planck units within the
LDT framework, showing how each unit acquires a clear physical interpretation related to
the fundamental rotational and temporal dimensions. We demonstrate that the apparent
arbitrariness of Planck units disappears when viewed through the lens of the ”2+2” di-
mensional interpretation, offering deeper insight into the nature of physical measurements
at the most fundamental scales.

2 Theoretical Framework

2.1 The ”2+2” Dimensional Structure

The foundation of Laursian Dimensionality Theory is the reformulation of Einstein’s
mass-energy equivalence from E = mc2 to Et2 = md2, where c represents the ratio
of distance to time, c = d/t. This mathematically equivalent expression suggests a
fundamental reinterpretation of spacetime:

• Two rotational spatial dimensions, represented by angular coordinates (θ, ϕ) and
captured in the d2 term

• Two temporal dimensions: conventional time t and a second temporal dimension τ
(typically perceived as the third spatial dimension), captured in the t2 term

This ”2+2” dimensional framework provides the context within which we will derive
and interpret Planck units.

2.2 Fundamental Constants in LDT

In LDT, fundamental physical constants take on specific interpretations related to the
dimensional structure:

• The gravitational constant G represents the coupling strength between mass-energy
and dimensional curvature across all four dimensions.

• The reduced Planck constant ℏ characterizes the fundamental quantum of action,
representing the minimal coupling between rotational and temporal dimensions.

• The speed of light c = d
t
represents the conversion factor between the rotational

dimensions and conventional time.

• Boltzmann’s constant kB connects energy with temperature, which in LDT repre-
sents collective oscillation frequency across both temporal dimensions.

• The vacuum permittivity ε0 characterizes the coupling between charges in the ro-
tational dimensions.

2



3 Numerical Derivation of Planck Units

We use the following values of fundamental constants in our calculations:

ℏ = 1.054571817× 10−34 J·s (1)

G = 6.67430× 10−11 m3·kg−1·s−2 (2)

c = 2.99792458× 108 m/s (3)

kB = 1.380649× 10−23 J/K (4)

ε0 = 8.8541878128× 10−12 F/m (5)

3.1 Planck Length

lP =

√
ℏG
c3

=

√
1.054571817× 10−34 · 6.67430× 10−11

(2.99792458× 108)3
≈ 1.616255× 10−35 m (6)

In LDT, the Planck length doesn’t represent a minimum spatial distance in the con-
ventional sense but instead corresponds to a fundamental angular displacement in the
rotational dimensions. The quantity lP is interpreted as:

lP =

√
ℏG
c3

=

√
ℏGt3

d3
= ∆θmin (7)

This represents the minimal resolvable angular change in the rotational dimensions
that creates measurable dimensional consequences.

3.2 Planck Time

tP =

√
ℏG
c5

=

√
1.054571817× 10−34 · 6.67430× 10−11

(2.99792458× 108)5
≈ 5.391247× 10−44 s (8)

In LDT, the Planck time represents the minimal temporal cycle duration across both
temporal dimensions:

tP =

√
ℏG
c5

=

√
ℏGt5

d5
=

√
tmin · τmin (9)

This provides the characteristic timescale at which the distinction between the two
temporal dimensions becomes fundamental, representing the minimal coherent oscillation
period in temporal space.

3.3 Planck Mass

mP =

√
ℏc
G

=

√
1.054571817× 10−34 · 2.99792458× 108

6.67430× 10−11
≈ 2.176434× 10−8 kg (10)

In LDT, the Planck mass represents the threshold mass at which an object’s gravita-
tional effects become significant enough to substantially couple the rotational dimensions
with both temporal dimensions:

mP =

√
ℏc
G

=

√
ℏd
Gt

= mthreshold (11)
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This mass establishes the scale at which gravitational coupling begins to significantly
affect quantum behavior across all four dimensions.

3.4 Planck Energy

EP = mP c
2 = (2.176434× 10−8) · (2.99792458× 108)2 ≈ 1.956× 109 J (12)

In LDT, the Planck energy represents the maximum energy that can be localized in
a minimal rotational-temporal configuration:

EP = mP c
2 = mP

d2

t2
=

mPd
2

t2
= Emax,local (13)

This energy corresponds to the limit at which further energy concentration would
fundamentally alter the dimensional structure itself.

3.5 Planck Temperature

TP =
EP

kB
=

1.956× 109

1.380649× 10−23
≈ 1.416784× 1032 K (14)

In LDT, temperature represents the collective oscillation frequency of particles across
both temporal dimensions. The Planck temperature corresponds to the maximum possi-
ble oscillation frequency:

TP =
EP

kB
=

mPd
2

kBt2
= ωmax (15)

At this temperature, thermal oscillations would occur at frequencies that fundamen-
tally alter the dimensional structure itself.

3.6 Planck Charge

qP =
√
4πε0ℏc =

√
4π · 8.8541878128× 10−12 · 1.054571817× 10−34 · 2.99792458× 108 ≈ 1.8755459×10−18 C

(16)
In LDT, electric charge represents a specific phase orientation in the rotational di-

mensions. The Planck charge corresponds to the fundamental quantum of phase shift:

qP =
√

4πε0ℏc =
√

4πε0ℏ
d

t
= ∆ϕquantum (17)

This represents the minimal phase change in the rotational dimensions that produces
observable electromagnetic effects.

3.7 Planck Voltage

VP =
EP

qP
=

1.956× 109

1.8755459× 10−18
≈ 1.0429× 1027 V (18)

In LDT, voltage represents the energy required to move a charge through a specific
rotational phase shift. The Planck voltage is:

VP =
EP

qP
=

mPd
2

qP t2
= Vmax (19)
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This represents the maximum sustainable potential difference per unit Planck charge
without disrupting the dimensional structure of spacetime itself.

3.8 Planck Impedance

ZP =
VP

qP/tP
=

VP tP
qP

=
1.0429× 1027 · 5.391247× 10−44

1.8755459× 10−18
≈ 299.79Ω (20)

In LDT, impedance represents resistance to charge flow in the rotational dimensions.
The Planck impedance:

ZP =
VP tP
qP

=
mPd

2tP
qP t2

= Zfundamental (21)

Remarkably, this value approximates the impedance of free space (Z0 ≈ 376.73Ω),
which in LDT represents the intrinsic resistance to phase propagation through the rota-
tional dimensions of the vacuum.

4 Dimensional Interpretation of Planck Units

The numerical derivations above reveal how Planck units emerge naturally from the
”2+2” dimensional structure proposed by LDT. Each unit can be reinterpreted in terms
of the fundamental properties of the rotational and temporal dimensions:

4.1 Spatial and Temporal Units

In conventional physics, the Planck length and Planck time are often interpreted as the
scales at which quantum gravity becomes significant and spacetime may become ”foamy”
or discrete. In LDT, these interpretations are refined:

• The Planck length represents the minimal angular displacement in rotational space
that creates measurable effects. It is not a ”smallest possible distance” but rather
a fundamental quantum of rotation.

• The Planck time represents the minimum temporal cycle across both temporal
dimensions. It sets the scale at which the distinction between the two temporal
dimensions (t and τ) becomes significant.

4.2 Mass, Energy, and Temperature

The Planck mass, energy, and temperature acquire clear physical meanings:

• The Planck mass represents the threshold mass at which an object’s gravitational
influence significantly couples all four dimensions in LDT. Below this mass, quantum
effects dominate; above it, gravitational effects become increasingly important.

• The Planck energy represents the maximum energy that can be localized in a min-
imal rotational-temporal configuration before fundamentally altering the dimen-
sional structure.

• The Planck temperature corresponds to the maximum oscillation frequency across
both temporal dimensions before temporal structure itself breaks down.
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4.3 Electromagnetic Units

The electromagnetic Planck units reveal fundamental aspects of charge and fields:

• The Planck charge represents the fundamental quantum of phase shift in the rota-
tional dimensions. The fact that the elementary charge e is significantly larger than
qP suggests that observed particles involve multiple fundamental phase quanta.

• The Planck voltage and impedance characterize the fundamental limits of electro-
magnetic potentials and resistance to phase flow in the rotational dimensions.

5 Dimensional Ratios and Natural Constants

One of the most illuminating aspects of LDT is how it explains seemingly arbitrary
dimensionless constants in physics. Several important dimensionless constants emerge
directly from ratios of Planck units:

5.1 Fine Structure Constant

The fine structure constant α ≈ 1/137 is one of the most important dimensionless con-
stants in physics. In LDT, it emerges as:

α =
e2

4πε0ℏc
=

(
e

qP

)2

· 1

4π
≈ 1

137
(22)

This means α represents the squared ratio of the elementary charge to the fundamental
quantum of rotational phase shift, normalized by 4π (the solid angle factor for a complete
rotation in the two rotational dimensions).

5.2 Gravitational Coupling Constant

The gravitational coupling constant αG, which characterizes the strength of gravity rel-
ative to the electromagnetic force, is given by:

αG =
Gm2

p

ℏc
≈ 10−38 (23)

Where mp is the proton mass. In LDT, this extremely small value is explained by the

dimensional coupling factor d4

t4
that appears in the effective gravitational coupling:

αG =
Gm2

p

ℏc
· d

4

t4
(24)

The apparent weakness of gravity compared to other forces emerges naturally from
this dimensional dilution factor.

6 Experimental Implications

The LDT interpretation of Planck units suggests several experimental approaches that
could potentially validate the theory:
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6.1 Anisotropies at High Energies

If space is fundamentally two-dimensional and rotational, experiments at very high ener-
gies might detect subtle anisotropies that reflect the rotational structure:

σ(θ, ϕ, E) = σ0(E) · [1 + αanis(E/EP ) · f(θ, ϕ)] (25)

Where σ represents some high-energy cross-section, σ0 is its conventional isotropic
value, αanis is an energy-dependent anisotropy parameter, and f(θ, ϕ) is a function of
rotation angles.

6.2 Temporal Dimension Signatures

The existence of a second temporal dimension (typically perceived as the third spatial
dimension) might be revealed through specific signatures in quantum systems that couple
differently to the two temporal dimensions:

∆E ·∆t ·∆τ ≈ ℏ2 (26)

Such a generalized uncertainty relation could potentially be tested in systems designed
to have specific couplings to both temporal dimensions.

6.3 Modified Dispersion Relations

At energies approaching Planck scales, particle dispersion relations should show modifi-
cations reflecting the ”2+2” dimensional structure:

E2 = p2c2 +m2c4 + α1pc
3E/EP + α2p

2c4/EP + ... (27)

These modifications might be detectable through precision measurements of ultra-
high-energy cosmic rays or in future high-energy collider experiments.

7 Conclusion

This paper has presented a comprehensive derivation of Planck units within the frame-
work of Laursian Dimensionality Theory. By interpreting spacetime as a ”2+2” dimen-
sional structure—two rotational spatial dimensions plus two temporal dimensions—we
have shown how Planck units acquire clear physical meanings related to fundamental
aspects of this dimensional structure.

Our numerical calculations demonstrate that conventional Planck units can be rein-
terpreted as:

• Natural scales that emerge from the geometry and coupling of rotational and tem-
poral dimensions

• Threshold values at which the distinction between different dimensional components
becomes significant

• Limiting cases beyond which the dimensional structure itself would be fundamen-
tally altered
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This reinterpretation transforms Planck units from seemingly arbitrary combinations
of constants to physically meaningful quantities directly related to the fundamental struc-
ture of reality. It also suggests specific experimental approaches that could potentially
validate LDT by detecting signatures of the proposed ”2+2” dimensional structure at
high energies or in precision quantum measurements.

The coherence of this framework—explaining not just individual Planck units but also
their relationships and the emergence of dimensionless constants—provides compelling
theoretical support for the LDT interpretation of spacetime. Further investigation along
these lines may yield deeper insights into the dimensional foundations that underlie all
physical measurements and potentially resolve longstanding puzzles at the intersection of
quantum mechanics and gravity.
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